Electronic and optical properties of monolayer and bilayer graphene.

نویسندگان

  • Y H Ho
  • J Y Wu
  • Y H Chiu
  • J Wang
  • M F Lin
چکیده

The electronic and optical properties of monolayer and bilayer graphene are investigated to verify the effects of interlayer interactions and external magnetic field. Monolayer graphene exhibits linear bands in the low-energy region. Then the interlayer interactions in bilayers change these bands into two pairs of parabolic bands, where the lower pair is slightly overlapped and the occupied states are asymmetric with respect to the unoccupied ones. The characteristics of zero-field electronic structures are directly reflected in the Landau levels. In monolayer and bilayer graphene, these levels can be classified into one and two groups, respectively. With respect to the optical transitions between the Landau levels, bilayer graphene possesses much richer spectral features in comparison with monolayers, such as four kinds of absorption channels and double-peaked absorption lines. The explicit wave functions can further elucidate the frequency-dependent absorption rates and the complex optical selection rules. These numerical calculations would be useful in identifying the optical measurements on graphene layers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundary properties between monolayer and bilayer graphene and valley filter

Submitted for the MAR11 Meeting of The American Physical Society Boundary properties between monolayer and bilayer graphene and valley filter TAKESHI NAKANISHI, AIST, MIKITO KOSHINO, Tohoku Univ., TSUNEYA ANDO, Tokyo Inst. Tech. — Graphene consists of a twodimensional hexagonal crystal of carbon atoms, in which electron dynamics is governed by the Dirac equation. The purpose of this paper is to...

متن کامل

Magneto-optical properties of multilayer graphene

The magneto-optical absorption properties of graphene multilayers are theoretically studied. It is shown that the spectrum can be decomposed into sub-components effectively identical to the monolayer or bilayer graphene, allowing us to understand the spectrum systematically as a function of the layer number. Oddlayered graphenes always exhibit absorption peaks which shifts in proportion to B, w...

متن کامل

Novel midinfrared plasmonic properties of bilayer graphene.

We study the midinfrared plasmonic response in Bernal-stacked bilayer graphene. Unlike its monolayer counterpart, bilayer graphene accommodates optically active phonon modes and a resonant interband transition at infrared frequencies. They strongly modify the plasmonic properties of bilayer graphene, leading to Fano-type resonances, giant plasmonic enhancement of infrared phonon absorption, a n...

متن کامل

Electronic and Optical Properties of the Graphene and Boron Nitride Nanoribbons in Presence of the Electric Field

Abstract: In this study, using density functional theory and the SIESTA computationalcode, we investigate the electronic and optical properties of the armchair graphenenanoribbons and the armchair boron nitride nanoribbons of width 25 in the presence of atransverse external electric field. We have observed that in the absence of the electricfield, these structures are se...

متن کامل

Interfacial coupling in rotational monolayer and bilayer graphene on Ru(0001) from first principles.

The interaction of graphene with metal is of critical importance for further optimization of the growth and transfer processes to achieve productive graphene. Here we report first-principles calculations with van der Waals corrections to address in-plane orientation effects on the geometric structure and electronic properties of monolayer and bilayer graphene on a Ru(0001) surface. We find that...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Philosophical transactions. Series A, Mathematical, physical, and engineering sciences

دوره 368 1932  شماره 

صفحات  -

تاریخ انتشار 2010